Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(21): 5413-5418, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28483999

RESUMO

Extensive cultivation of crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has suppressed some major pests, reduced insecticide sprays, enhanced pest control by natural enemies, and increased grower profits. However, these benefits are being eroded by evolution of resistance in pests. We report a strategy for combating resistance by crossing transgenic Bt plants with conventional non-Bt plants and then crossing the resulting first-generation (F1) hybrid progeny and sowing the second-generation (F2) seeds. This strategy yields a random mixture within fields of three-quarters of plants that produce Bt toxin and one-quarter that does not. We hypothesized that the non-Bt plants in this mixture promote survival of susceptible insects, thereby delaying evolution of resistance. To test this hypothesis, we compared predictions from computer modeling with data monitoring pink bollworm (Pectinophora gossypiella) resistance to Bt toxin Cry1Ac produced by transgenic cotton in an 11-y study at 17 field sites in six provinces of China. The frequency of resistant individuals in the field increased before this strategy was widely deployed and then declined after its widespread adoption boosted the percentage of non-Bt cotton plants in the region. The correspondence between the predicted and observed outcomes implies that this strategy countered evolution of resistance. Despite the increased percentage of non-Bt cotton, suppression of pink bollworm was sustained. Unlike other resistance management tactics that require regulatory intervention, growers adopted this strategy voluntarily, apparently because of advantages that may include better performance as well as lower costs for seeds and insecticides.


Assuntos
Proteínas de Bactérias , Endotoxinas , Gossypium/genética , Proteínas Hemolisinas , Hibridização Genética , Mariposas , Animais , Toxinas de Bacillus thuringiensis , Resistência a Inseticidas , Plantas Geneticamente Modificadas
2.
Environ Monit Assess ; 186(1): 395-406, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23974536

RESUMO

Of the operations required for reclamation in arid and semi-arid regions, establishing vegetation entails the most uncertainty due to reliance on unpredictable rainfall for seed germination and seedling establishment. The frequency of successful vegetation establishment was estimated based on a land surface model driven by hourly atmospheric forcing data, 7 years of eddy-flux data, and 31 years of rainfall data at two adjacent sites in southern Arizona, USA. Two scenarios differing in the required imbibition time for successful germination were evaluated-2 or 3 days availability of sufficient surface moisture. Establishment success was assumed to occur if plants could germinate and if the drying front in the soil did not overtake the growth of seminal roots. Based on our results, vegetation establishment could be expected to fail in 32 % of years. In the worst 10-year span, six of ten plantings would have failed. In the best 10-year span, only one of ten was projected to fail. Across all assessments, at most 3 years in a row failed and 6 years in a row were successful. Funding for reclamation seeding must be available to allow reseeding the following year if sufficient amount and timing of rainfall does not occur.


Assuntos
Ecossistema , Monitoramento Ambiental , Desenvolvimento Vegetal/fisiologia , Chuva , Solo/química , Arizona , Clima Desértico , Estações do Ano
3.
Theor Popul Biol ; 84: 56-71, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23287702

RESUMO

It is well established theoretically that competing species may coexist by having different responses to variation over time in the physical environment. Whereas previous theory has focused mostly on year-to-year environmental variation, we investigate how within-year variation can be the basis of species coexistence. We ask also the important but often neglected question of whether the species differences that allow coexistence are compatible with evolutionary processes. We seek the simplest circumstances that permit coexistence based on within-year environmental variation, and then evaluate the robustness of coexistence in the face of evolutionary forces. Our focus is on coexistence of annual plant species living in arid regions. We first consider environmental variation of a very simple structure where a single pulse of rain occurs, and different species have different patterns of growth activity following the rain pulse. We show that coexistence of two species is possible based on the storage effect coexistence mechanism in this simplest of varying environments. We find an exact expression for the magnitude of the storage effect that allows the functioning of the coexistence mechanism to be analyzed. However, in these simplest of circumstances, coexistence in our models is not evolutionarily stable. Increasing the complexity of the environment to two rain pulses leads to evolutionarily stable species coexistence, and a route to diversity via evolutionary branching. This demonstration of the compatibility of a coexistence mechanism with evolutionary processes is an important step in assessing the likely importance of a mechanism in nature.


Assuntos
Evolução Biológica , Plantas/genética , Estações do Ano , Clima Desértico , Ecossistema , Modelos Biológicos
4.
Proc Natl Acad Sci U S A ; 108(46): 18808-13, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22042865

RESUMO

Sickle cell disease (SCD) is a hematologic disorder caused by a missense mutation in the adult ß-globin gene. Higher fetal hemoglobin (HbF) levels in red blood cells of SCD patients have been shown to improve morbidity and mortality. We previously found that nuclear receptors TR2 and TR4 repress expression of the human embryonic ε-globin and fetal γ-globin genes in definitive erythroid cells. Because forced expression of TR2/TR4 in murine adult erythroid cells paradoxically enhanced fetal γ-globin gene expression in transgenic mice, we wished to determine if forced TR2/TR4 expression in a SCD model mouse would result in elevated HbF synthesis and thereby alleviate the disease phenotype. In a "humanized" sickle cell model mouse, forced TR2/TR4 expression increased HbF abundance from 7.6% of total hemoglobin to 18.6%, accompanied by increased hematocrit from 23% to 34% and reticulocyte reduction from 61% to 18%, indicating a significant reduction in hemolysis. Moreover, forced TR2/TR4 expression reduced hepatosplenomegaly and liver parenchymal necrosis and inflammation in SCD mice, indicating alleviation of usual pathophysiological characteristics. This article shows that genetic manipulation of nonglobin proteins, or transcription factors regulating globin gene expression, can ameliorate the disease phenotype in a SCD model animal. This proof-of-concept study demonstrates that modulating TR2/TR4 activity in SCD patients may be a promising therapeutic approach to induce persistent HbF accumulation and for treatment of the disease.


Assuntos
Anemia Falciforme/genética , Hemoglobina Fetal/genética , Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares/genética , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/genética , Animais , Células da Medula Óssea/citologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Fenótipo , Baço/citologia , Transgenes , Talassemia beta/genética , gama-Globinas/metabolismo
5.
Proc Biol Sci ; 269(1487): 151-5, 2002 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11798430

RESUMO

Evolution of the germination rate (the proportion of newly produced and dormant seeds that germinates every year) of annual plants is investigated, when the environment is temporally stochastic and spatially heterogeneous. The environment consists of two habitats with synchronous stochastic variation in the annual yield and permanent difference in constant seed survival rates. Density dependence operates within the habitats, which are connected via restricted seed dispersal. We find that instead of a single common evolutionarily stable strategy the coexistence of several germination strategies is possible and that in an initially monomorphic population evolutionary branching may occur. During evolutionary branching the population undergoes disruptive selection and splits into two branches of different lineages that converge to the evolutionarily stable coalition of different germination strategies. It is shown that spatial heterogeneity and restricted dispersal are essential for evolutionary branching. Disruptive selection on the germination rate presents yet another possibility for parapatric speciation.


Assuntos
Adaptação Fisiológica , Fenômenos Fisiológicos Vegetais , Sementes/fisiologia , Germinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...